Isotonic Water Transport in Secretory Epithelia , 12
نویسنده
چکیده
The model proposed by Diamond and Bossert [1] for isotonic water transport has received wide acceptance in recent years. It assumes that the local driving force for water transport is a standing osmotic gradient produced in the lateral intercellular spaces of the epithelial cell layer by active solute transport. While this model is based on work done in absorptive epithelia where the closed to open direction of the lateral space and the direction of net transport are the same, it has been proposed that the lateral spaces could also serve as the site of the local osmotic gradients for water transport in secretory epithelia, where the closed to open direction of the lateral space and net transport are opposed, by actively transporting solute out of the space rather than into it. Operation in the backward direction, however, requires a lower than ambient hydrostatic pressure within the lateral space which would seem more likely to cause the space to collapse with loss of function. On the other hand, most secretory epithelia are characterized by transport into a restricted ductal system which is similar to the lateral intercellular space in the absorptive epithelia in that its closed to open direction is the same as that of net transport. In vitro micropuncture studies on the exocrine pancreas of the rabbit indicate the presence of a small but statistically significant increase in juice osmolality, 6 mOsm/kg H(2)O, at the site of electrolyte and water secretion in the smallest extralobular ducts with secretin stimulation which suggests that the ductal system in the secretory epithelia rather than the lateral intercellular space is the site of the local osmotic gradients responsible for isotonic water transport.
منابع مشابه
Standing-Gradient Osmotic Flow A mechanism for coupling of water and solute transport in epithelia
At the ultrastructural level, epithelia performing solute-linked water transport possess long, narrow channels open at one end and closed at the other, which may constitute the fluid transport route (e.g., lateral intercellular spaces, basal infoldings, intracellular canaliculi, and brush-border microvilli). Active solute transport into such folded structures would establish standing osmotic gr...
متن کاملFunctional Consequences of Ultrastructural Geometry in "backwards" Fluid-transporting Epithelia
Many fluid-transporting epithelia possess dead-end, long, and narrow channels opening in the direction to which fluid is being transported (basal infoldings, lateral intercellular spaces, etc.). These channels have been thought to possess geometrical significance as standing-gradient flow systems, in which active solute transport into the channel makes the channel contents hypertonic and permit...
متن کاملThe lateral intercellular space as osmotic coupling compartment in isotonic transport.
Solute-coupled water transport and isotonic transport are basic functions of low- and high-resistance epithelia. These functions are studied with the epithelium bathed on the two sides with physiological saline of similar composition. Hence, at transepithelial equilibrium water enters the epithelial cells from both sides, and with the reflection coefficient of tight junction being larger than t...
متن کاملStanding-Gradient Osmotic Flow
At the ultrastructural level, epithelia performing solute-linked water transport possess long, narrow channels open at one end and closed at the other, which may constitute the fluid transport route (e.g., lateral intercellular spaces, basal infoldings, intracellular canaliculi, and brush-border microvilli). Active solute transport into such folded structures would establish standing osmotic gr...
متن کاملThe Role of Paracellular Pathways in Isotonic Fluid Transport *
Paracellular pathways across "leaky" epithelia are the major route for transepithelial ionic diffusion. The permselective properties of these pathways suggest that they offer a watery environment through which ions diffuse in their hydrated forms. There is also suggestive evidence that, at least in some tissues, paracellular pathways provide a significant route for transepithelial water flow in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Yale Journal of Biology and Medicine
دوره 50 شماره
صفحات -
تاریخ انتشار 1977